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Abstract—In 1997, Henry Lieberman stated that debugging
is the dirty little secret of computer science. Since then, several
promising debugging technologies have been developed such as
back-in-time debuggers and automatic fault localization methods.
However, the last study about the state-of-the-art in debugging is
still more than 15 years old and so it is not clear whether these
new approaches have been applied in practice or not.

For that reason, we investigate the current state of debugging
in a new comprehensive study. First, we review the available
literature and learn about current approaches and study results.
Second, we observe several professional developers while debug-
ging and interview them about their experiences. Based on these
results, we create a questionnaire that should serve as the basis
for a large-scale online debugging survey later on. With these
results, we expect new insights into debugging practice that help
to suggest new directions for future research.

I. INTRODUCTION

“Debugging is twice as hard as writing the program in the
first place” [1]. This quote of Brian W. Kerningham illustrates
a problem every software developer has to face. Debugging
software is difficult and, therefore, takes a long time, often
more than creating it [2]. When debugging, developers have
to find a way to relate an observable failure to the causing
defect in the source code. While this is easy to say, the
distance from defect to failure may be long in both time and
space. Developers need a deep understanding of the software
system and its environment to be able to follow the infection
chain back to its root cause. While modern debuggers can aid
developers in gathering information about the system, they can
not relieve them of the selection of relevant information and the
reasoning. Debugging remains a challenging task demanding
much time and effort.

Several researchers, educators, and experienced profession-
als have tried to improve our understanding of the knowledge
and activities included in debugging programs. The earliest
studies trying to understand how debugging works date as far
back as 1974 [3]. In the following years, debugging tools have
been improved and the lack of knowledge has been tackled [2],
[4]–[6]. However, in 1997 Henry Liebermann had to say that
“Debugging is still, as it was 30 years ago, largely a matter of
trial and error.” [7]. Also, a more recent survey from 2008 still
indicates that debugging is seen as problematic and inefficient
in professional context as ever [8]. The main reasons seem to
be aged debugging tools and a lack of knowledge of modern
debugging methods. Since that time, researchers proposed still

more advanced debugging tools and methods. For example,
back-in-time debuggers [9] that allow developers to follow
infection chains back to their root causes or multiple automatic
fault localization methods [10] that automatically highlight
faulty statements in programs. Nevertheless, so far it is not
clear whether the current advancement in research has already
improved the situation in practice or not. For that reason, we
state our research question as follows:

Have professional software developers changed their
way of debugging by using recent achievements in
debugging technology?

We aim to answer this question by studying debugging in
the field—observing the number of bugs, the time of detection,
and the effort to fix them. First, we started with a comprehen-
sive literature review that revealed current debugging trends
and existing study results. After that, we visited four software
companies in Germany and interviewed a total of eight de-
velopers. With these results, we got first insights into current
debugging practices and derived an online questionnaire that
is currently being answered. The contributions of this paper
are:

• Review of the available literature on studies on debug-
ging behaviour

• A field study in four companies with eight developers
in order to learn about their debugging habits

• Deriving a questionnaire for a larger debugging survey

The next section gives more details on our literature review.
Section III explains the design of our field study and Section IV
presents its results. We address some threats to the validity
in Section V. In Section VI, we describe the questions of our
online survey. Finally, we conclude in Section VII.

II. LITERATURE REVIEW

The earliest study of debugging behaviour dates as far back
as 1974. Gould and Drongowski [3] conducted a lab study
with 30 participants. Each participant was given a printed
Fortran source code and varying additional information. They
then had to find an artificially inserted bug in that source
code. Due to the limitations of the time, the developers could
not execute the program. Nevertheless, the authors observed
similarities amongst all developers: they scanned the code



for usual suspects before trying to actually understand its
behaviour.

A year later, the same authors studied developers equipped
with a symbolic debugger [11]. While the use of the debugger
did not improve but lengthen the debugging times, this was
attributed to distorting factors. It was only used for bugs that
were to hard to solve without and the programs used were
short and with a linear flow of control. The authors formulated
a “gross descriptive model of debugging” which consisted of
an repeated iteration of three steps:

1) Select a debugging tactic
2) Try to find a clue
3) Generate a hypothesis based on the clue if any

This was also the first time that evidence had been found for
backwards reasoning from observable failure to root cause.

In 1982, Weiser introduced the notion of program slicing
[12]. Developers debugged one of three Algol-W programs
that contained an artificially inserted bug and were afterwards
asked to identify statements taken from that program. The
results showed that programmers could remember statements
that influenced or were influenced by the statement containing
the bug better than unrelated statements.

In 1985, Vessey found evidence that programming experts
and novices differ in their debugging strategies [13]. She found
out that experts are more flexible in choosing their tactics and
develop an overall program understanding. Novices who lack
that understanding are often constrained by their initial tactic
and hypothesis, even if both turned out to be not useful.

In 1997, Eisenstadt [14] collected 59 bug anecdotes from
experts and proposed a three dimensional classification of bug
stories:

1) The reason, why the bug was difficult.
2) The type of the root cause identified.
3) The most useful technique used to find the root cause.

He then identified two main sources for difficult bugs: large
gaps between root cause and failure and bugs that render tools
inapplicable. The results also showed that these bugs can be
solved by gathering and examining additional runtime data.

Since 2000, many researchers have tried to improve the
understanding of specific aspects of debugging [9], [15]–[22],
but these focus mostly on the introduction of new tools or
how debugging can be taught to students. For example, there
have been multiple approaches to automate parts of the fault
localization process [23]–[40], a categorization and overview
can be found in [10]. Moreover, a complete discussion of
current debugging approaches can be found in [41].

Many software developers have also tried to create a
guideline that can help other troubled developers improve
their debugging skills and reduce time and effort spent on
debugging in favour of developing new features. Some of these
discussions resulted in debugging guides published as books.

“Debugging: The 9 Indispensable Rules for Finding Even
the Most Elusive Software and Hardware Problems” [6] was
one of the first general purpose debugging books. It teaches
general strategies and how to apply them to real life bug stories
by example.

“Debugging by Thinking” [5] relates debugging with other
domains of problem solving and tries to apply their methods.
It also provides a list of debugging strategies, heuristics and
tactics, each with a detailed instruction how and when it can
be applied.

“The Developer’s Guide to Debugging” [4] teaches tech-
niques to solve specific types of problems, that are usually very
challenging. It exemplifies them using GDB, Visual Studio and
other Tools applicable to C and C++.

“Why Programs Fail” [2] introduces the reader to the infec-
tion chain and how the knowledge of its existence can help in
debugging and bug prevention. It teaches formal processes for
testing, problem reproduction, problem simplification and ac-
tual debugging. It promotes Scientific Debugging, a debugging
method based on the scientific method of generating theories.
It involves repeatedly formulating hypotheses, planning and
executing experiments for verification, and refining hypotheses
until the root cause is found.

In the last years, we have seen many new debugging tools
and methods. However, to the best of our knowledge, the latest
general purpose debugging study amongst professional soft-
ware developers is more than 15 years old [14]. For that reason,
we argue that it is necessary to update our knowledge about
professional software debugging to know which problems are
still open and which should be solved next.

III. EXPERIMENTAL SETUP OF THE FIELD STUDY

Goal of the field study was getting an impression of
professional debugging in modern software companies. This
impression was necessary to create a general debugging ques-
tionnaire. We visited four software companies in Germany
varying in size from five to several hundred employees. All
four companies are creating web applications, some self hosted
and some licensed. We could follow eight developers through
the course of their day and observe their methods. We asked
each developer to think aloud so we could get an impression
of their methods. At the end of each visit, we asked each de-
veloper to describe his overall process himself. We also asked
if they knew modern tools such as back-in-time debuggers and
if they deemed them useful.

An overview of the relevant characteristics of each com-
pany is given in table I. For each company it shows the number
of employees, the number of software developers, the number
of developers we observed, and the usual size of teams in
that company, as well as the development process they used,
the technology they built upon, and the tools they applied.
These lists are not exhaustive but rather show the tools and
technologies we could see during our visits. In addition to
that data, it is worth noting that the third company is part of
a larger Web-oriented enterprise.

Table II shows an overview of the relevant characteristics
of the individual participants. We asked for their age, highest
educational degree, and experience in software development.
We also noted their gender and current position.



TABLE I. RELEVANT CHARACTERISTICS OF THE FOUR COMPANIES VISITED IN THE FIELD STUDY

# Employees # Developers # Observed Team Size Process Used Technologies Used Tools

A 300 50 3 7
Scrum

3 week sprints
Java EE, Hibernate, JUnit,
JSF, ANT, JBoss, Tomcat

Jira, Jenkins, Git,
Eclipse, PL/SQL Developer

B 25 15 2 5 Kanban
Java, ANT, JUnit, Tomcat, XML, SVG,

JavaScript, NodeJS, Grunt, Jasmine, Karma
Jira, Jenkins, Git, Eclipse,

Sublime Text, Chrome DevTools

C 150 60 1 5 Kanban
Java EE, ANT, Sonar, Tomcat,

Morphia, JSON, MongoDB
Jira, Jenkins, Git, Eclipse

D 5 3 2 5
Scrum

weekly sprints
PHP, Zend, Propel, MySQL, New Relic,

JavaScript, XHTML, JQuery
Jira, Hudson, Git, Sublime Text,

Chrome DevTools, PHPStorm, Apache

TABLE II. RELEVANT CHARACTERISTICS OF THE PARTICIPANTS OF THE FIELD STUDY

Company Age Gender Degree Experience Position

A 40 male Diploma in Engineering
8 years freelance web development
3 years web front-end development

1 year back-end development

Java back-end developer

A 26 male Master in Computer Science 2 years back-end development Java back-end developer

A 31 male Bachelor in Computer Science 5 years back-end development Java back-end developer

B 27 male Master in IT-Systems-Engineering
6 years miscellaneous

1 year JavaScript development
developing a JavaScript graphics library

B 28 male Master in Engineering 2 years back-end development Java back-end developer

C 30 male Master in Computer Science 7 years back-end development Java back-end developer

D 27 male
Bachelor in Artificial Intelligence

and Computer Science
4 years front-end development Web front-end developer

D 34 male
Bachelor in Computer Science

Certified IT-Specialist
15 years miscellaneous

one year back-end development
PHP back-end developer

IV. STUDY RESULTS

A. Company A

The development process of the first company includes a
mandatory code review for each feature or fix. Each team
had a dedicated quality assurance employee, who performs
manual and automated integration and acceptance tests. They
also regularly execute automated unit tests written by the
developers themselves.

The first developer we observed uses full-text search and
the search-for-class utilities of the Eclipse IDE to navigate the
source code. When confronted with unexpected behaviour, he
first checks which code was recently modified and therefore
might probably contain the fault. He then sets breakpoints at
key locations of the program flow to interrupt the program and
check the program state. Checking database contents required
a separate tool. Interrupting the program to check its state
is also a preventive instrument to him, when new code is
complex or uses unfamiliar interfaces. He is not aware of
any standard approach, but his approach can be classified as
scientific debugging [2] without taking notes, as he formulates
hypotheses and then checks these by experiment.

The second developers’ source code navigation methods
of choice are the search-for-class, jump-to-implementation,
and find-callers utilities of the Eclipse IDE. When debugging,
he makes sure to work on the exact same Git branch the
bug was found on to eliminate possible version dependencies.
He then inspects the latest changes on that branch utilizing
the capabilities of git to show differences between commits.
Explaining his approach is as hard to him as to the first
developer, but he also follows a simple version of scientific
debugging, setting breakpoints to inspect the program state

to verify assumptions. He calls this an “intuitive method”.
When testing hypotheses the hot recompile capabilities of Java
proved allowed him to change the code at runtime and proceed
in a trial and error fashion until understanding the problem.

When we visited the company, the third developer had to
find the cause of a dependency conflict. A class included in
multiple libraries was delivered in different, not compatible
versions. To find out which jar files included the class, he first
inspected the state of the Java Runtime Environment using
print statements to get a list of all jar files actually loaded. He
then used the command line tool grep to check the content of
these files for the conflicting class. After spending a reasonable
amount of time and effort this way, he postponed the fix
and planned to improve the overall dependency management
instead. This also meant postponing tasks depending on a new
library that introduced the conflicts.

B. Company B

The development process of the second company includes
a mandatory code review for each feature or fix. Following
test-driven development, the general process for new features
includes an automated “happy case” test written upfront and
automated edge case tests written after or while implementing.
Bug reports were created on GitHub, either by a customer or
by support employees. If the bug is simple, support employees
fix it themselves, but most problems are only reproduced
by support and fixed by developers. Some cases cannot be
reproduced because of third party systems the customer uses.
In that case, support employees try to help with diagnosis
until the problem is either solved or can be reproduced using
substitutes.

The first participant in this company uses mainly full text



search or a search for symbols provided by Sublime Text
to navigate the code. New automated test cases mark the
beginning of each of his debugging sessions. At this point,
he usually has a first hypothesis, that can be tested by setting
breakpoints at relevant locations and inspecting the program
state. To gather more data, he uses the interactive console of
the Google Chrome development tools to explore objects and
APIs. When examining the program flow, he makes extensive
use of stepping and the “restart frame” functionality of the
Google Chrome debugger. At one instance, he refactored the
program and ran his test suite again to verify his internal model
of the program.

The other developers’ source code navigation tools are full
text search and many of the navigation utilities provided by
the Eclipse IDE. He follows a simple debugging philosophy
called “Test it, don’t guess it”, which can be seen as a
simplified version of scientific debugging. When confronted
with a runtime exception he reads the stack trace provided
very carefully to identify the relevant classes and methods,
proceeding by setting breakpoints, stepping through the pro-
gram, and inspecting the program state to verify hypotheses.
When needing backwards navigation he uses Eclipses “Drop
to Frame” utility where applicable.

C. Company C

The development process of the third company includes
mandatory code review for each new feature or fix. There is a
separate quality assurance department that performs automated
as well as manual testing. Unit tests written by the developers
themselves complement the test suite.

We observed only one developer in this company. To
navigate the source code, he uses full-text search as well as the
navigation utilities provided by Eclipse. His general debugging
approach usually starts at the beginning of a relevant use
case, stepping into the program and inspecting variables to
get an impression of the program and data flow. He then
starts setting breakpoints at relevant locations and testing
hypotheses. Exception breakpoints, capturing all exceptions,
even if caught by the program, provide him with further
data. When inspecting complex objects, he sometimes writes
a custom toString() method to aid the investigation.

D. Company D

The development process of the fourth company includes
an optional code review and automated unit tests. The review
is not mandatory because they deem the slow down too heavy
for a start-up needing to evolve quickly. A beta tester group
of users reports bugs unnoticed by the developers themselves.

The front-end developer uses only full-text search and
search for files by name to navigate the source code. When
debugging, his first step is reading recent source code, check-
ing it for obvious mistakes. He then uses the Google Chrome
debugger to set breakpoints, step through the program and in-
spect variables, using the interactive console to explore objects
and APIs. When working with the (X)HTML document, he
uses the inspector to examine the results of the code.

The back-end developers’ code navigation tools are full-
text search, manual folder navigation and the “find imple-
menters” and “find callers” utilities of the PHPStorm IDE.

When working on a bug report, he first examines the logs of
the New Relic monitoring system to get a impression of the
system parts involved, proceeding by setting breakpoints and
examining the program state and flow to test hypotheses. He
also compares the defective modules to working ones which
employ the same patterns and use the same APIs to check for
differences.

E. General Findings

While the level of education and amount of practical
experience varies among the developers, all reported that they
were never trained in debugging. They learned debugging
either by doing or from demonstration by colleagues. Not
surprisingly, they have difficulties describing their approach.
While they can speak about development processes in general
on an abstract level, they resort to showing and examples when
speaking about debugging.

All developers use a simplified scientific method, although
they did not describe it using that name. They formulate hy-
potheses about the program and then set up simple experiments
to verify them. They do neither take notes nor mark their
results in the source code, though. This might be a hint that
scientific debugging is a way of thought that comes easy to
most developers.

Some developers allowed us to see how they formed their
initial hypotheses. They use stack traces, log files and review
the code to identify related modules, classes and methods.
They then use their system knowledge and reference material
to identify suspicious code in these parts of the program.
Others were able to formulate an initial hypothesis just after
reading the bug report. This is probably due to different
levels of difficulty of the bugs they encountered and also their
knowledge about the system.

All participants are proficient in using symbolic debuggers.
They also prefer them to the use of log statements, because
debuggers allow for additional inspections without the need
to restart the program. Only a few developers claim that
they are aware of all features of their IDE or debugger,
though. Unknown features include “Drop to Frame” or “Restart
Frame”, conditional breakpoints, and various kinds of special
breakpoints.

No subject had known back-in-time debuggers before. All
of them question the usefulness of back-stepping by deeming
it sufficient to set a breakpoint earlier in the program and
rerun the test. A back-in-time debugger is only considered
useful if it has only a very small overhead and memory
footprint when compared to a regular debugger. Automatic
fault localization was also unknown, but the suspects deem it
more useful, depending on the analysis runtime and difficulty
of the debugging session. They consider running an analysis
overnight to localize a bug that could not be found till the end
of a workday a viable option.

V. THREATS TO VALIDITY

The results of this field study can not be generalized. The
main concern is the small scale. Eight developers are not
enough to rule out statistical anomalies, the same goes for
four companies. Another concern is the limited time span.



Each developer was only observed for some hours during
one workday. This results in a limited sample of problems
they might encounter during day to day work limiting the
observed methods and approaches. Furthermore all companies
created web applications, which may or may not result in a
similar company culture. Nevertheless, these interviews pro-
vide meaningful insights that helped us design our debugging
questionnaire.

VI. PREPARING AN ONLINE QUESTIONNAIRE

To consolidate and expand our results with reliable statistic
data we are performing an online survey. Based on the results
mentioned in section IV, we formulated 34 questions on
debugging tools, workload, approach and education as well
as bug tracking and bug prevention. At the time of writing,
the online survey as well as a printable version are available
at https://www.uni-potsdam.de/skopie-up/index.php/689349.

At the beginning of the survey we collect some background
information, namely age, gender, education, development ex-
perience, the size of the companies the participants work for,
and the programming languages they use. This information
will help us to identify influencing factors for the approach
developers have when debugging software.

Because modern tools are largely unknown to the partic-
ipants in the field study, the questionnaire asks which tools
the developer knows and which he uses for debugging. We
divide debugging tools in 13 categories: printing and logging,
assertions and Design by Contract, symbolic debuggers, back
in time debuggers, likely invariants, program slicing, slice
based fault localization, spectrum based fault localization,
statistics based fault localization, program state based fault
localization, machine learning based fault localization, model
based fault localization, and data mining based fault localiza-
tion. The distinction of the automatic fault localization methods
is taken from Wong [10]. We also ask how much developers
value different aspects of new debugging tools. The available
aspects are features, overhead or runtime, IDE integration,
easy installation, easy to use, and available documentation or
support.

We then try to assess the participants’ debugging workload
by asking how much of their time they spent developing and
how many bugs of different difficulties they encounter. We also
ask them to estimate if the difficulty of debugging has changed
in the last years or will change in the next.

As difficult bugs often enable deeper insights into the
developers approach, we include some questions on the hardest
bug the participants had to face. We ask them to position it
in all three dimensions of a bug war story Eisenstadt [14]
defined: The type of the bug, why it was especially hard to
debug, and what technique turned out to be most helpful to find
it. Early tests have shown that many of the bugs remembered
as the hardest are due to parallel execution and do not fit in
the existing categories. Therefore, we added the category of
parallel problem to the root cause dimension. We also ask
how long it took to fix the bug.

Because the participants of the field study show difficulties
explaining their approach, we want to find out if that is a
common problem. To this end, we ask participants of the online

survey to describe their standard approach, if they follow one.
As our field study indicates written records being uncommon,
we also ask if the participants keep such and what kind of
records they use.

Zeller [2] has devoted a whole chapter on learning from
past bugs. He explains how to utilize the bug history of a
project to identify problems in the development process and
to fix future bugs faster. Therefore, we ask the participants if
they keep a log of fixed bugs, if they add solutions to their log
and if they use it to learn from past mistakes.

We also want to analyse bug prevention and its effects on
the remaining bugs. Therefore, we include questions in the
survey to assess what type of automated tests and analysis the
participants perform.

Lastly, we are interested in the influence of education on
debugging. To this end, we ask the participants if they got any
debugging education and when that was. We also ask if they
have read any literature on debugging methods.

With all these questions we hope to find out to what extent
the advancements in the debugging technology have entered
the field of professional software development. We want to
assess what factors influence the adoption of new tools or
methods and what directions future research and education
should take to further improve developers’ debugging abilities.

VII. CONCLUSION

In this paper, we presented our results of studying de-
bugging behaviour of professional software developers. We
reviewed the available literature and noted a 17 year gap since
the last comparable study. We performed an explorative field
study, visiting four companies in Germany and observing a
total of eight developers in their habitual working environment.
All of them were proficient in using a symbolic debugger.
Although all followed a standard approach that can be seen
as a simplified scientific method, none of them was aware
of this or able to explain his approach without resorting to
demonstration. None of them had any formal education in
debugging and also nobody had knowledge of back in time
debuggers or automatic fault localisation techniques. Based on
these results, we created an online survey to consolidate and
expand our results.
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