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Debugging failing unit tests, particularly the search for failure causes, is often a
laborious and time-consuming activity. By detecting anomalies in tested program enti-
ties, developers are able to reduce the potentially large search space. However, such
anomalies do not necessarily indicate defects and so developers still have to analyze
numerous candidates one by one until they find the failure cause. This procedure is
inefficient since it does not take into account how suspicious entities relate to each
other, whether another developer is better qualified for debugging this failure, or how
erroneous behavior comes to be.

We present test-driven perspectives as an interconnected debugging guide that in-
tegrates anomalies and failure causes. By analyzing failure-reproducing unit tests, we
reveal suspicious system parts, identify the most qualified developers, shorten the in-
fection chain, and present erroneous behavior in the execution history and code base.
Furthermore, we provide test quality feedback to recognize new failures as soon as
possible. All test-driven perspectives are realized in the Paths tool suite: PathMap
as an extended test runner supports a breadth first search for narrowing down failure
causes, recommends developers for help, and provides test quality feedback; Path-
Browser extends the source code editor with test information and automatically gener-
ated contracts from sane behavior; PathFinder is a lightweight back-in-time debugger
that classifies failing test behavior for easily following infection chains back to defects;
and PathView presents selected classes, methods, and their relations with respect to
anomalies and failures.

1 Introduction

Debugging failing test cases tends to be a tedious activity since it requires deep knowl-
edge of the system and its behavior [14]. For localizing failure causes, developers
have to follow the infection chain backwards from the observable failure to the past de-
fect [15]. In practice, however, this process is only partially supported by tools such as
symbolic debuggers and test runners. They do not provide advice to failure-inducing
anomalies, qualified developers for help, suspicious source code entities, or back-in-
time capabilities. For this reason, debugging often requires too much time because
developers have to rely primarily on their intuition.

To decrease the required debugging effort, techniques such as spectrum-based
fault localization [6] reveal anomalies that may help in identifying failure causes. By
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comparing covered program statements of passed and failed test cases, the tech-
nique produces a prioritized list of suspicious statements which restricts the search
space and reduces speculations. Unfortunately, anomalies are not failure causes—
developers have only a few starting points that must be debugged one by one. By
debugging these suspicious source code entities, anomalies and failure causes are
not integrated with each other and thus lead to a number of questions that are difficult
to answer: what are the relations between anomalies and failures; who has the most
experience for understanding the failure and its anomalies; which anomalies bring fail-
ures closer to defects; how are infected state and anomalous behavior propagated so
that failures come to be; which classes and methods deal with anomalies and failures.

In this paper, test-driven perspectives integrate anomalies and failure causes to
support developers in debugging reproducible failures. Developers isolate suspicious
system parts, identify most qualified colleagues for help, come closer to failure causes
by automatically shorten the infection chain, debug erroneous behavior back in time,
and fix defects with comprehensive code views that highlight all failure-relevant pro-
gram entities. Furthermore, we give developers feedback about the effectivity and effi-
ciency of their test base to reveal new failures as soon as possible. Based on unit tests
as descriptions of reproducible failures, we reveal anomalies with techniques such as
spectrum-based fault localization [6] and type harvesting [3] and combine them with a
compact system overview, development information, design by contract, the execution
history, and the code base. The Path tool suite realizes our approach and consists of
PathMap as an extended test runner, PathBrowser as a test-driven source code edi-
tor, PathFinder as a lightweight back-in-time debugger, and PathView as an interactive
perspective on multiple program entities. To achieve fast response time of our tools,
we base our implementation on test cases as entry points into behavior [13] and our
step-wise run-time analysis [11]. Our analysis automatically splits and distributes, de-
pending on developers needs, the dynamic analysis over multiple runs and so ensures
a high degree of scalability. Thus, we answer quickly where to start debugging, who
understands failures best, when defects are able to manifest for the first time, what hap-
pened before failures, which source code is affected by failures, and how new failures
can be recognized more easily.

The remainder of this paper is organized as follows: Section 2 explains contem-
porary challenges in testing and debugging. Sections 3 describes our test-driven per-
spectives and how they support debugging of reproducible failures. Section 4 con-
cludes and presents next steps.

2 Finding Causes of Reproducible Failures

Debugging is the tedious search for failure causes through the time and space of pro-
grams. Beginning with failure-reproducing behavior, in the best case in the form of
test cases, developers have to follow observable failures via the infection chain back
to responsible defects [15]. For instance, the small example in Figure 1 (a) illustrates
that developers have to decide at each executed method what the corrupted state or
behavior is so that they can trace the observable failure (bottom left) back to the de-
fect (top). However, symbolic debuggers and standard testing frameworks face several
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challenges with respect to localizing failure causes. On the one hand, debugging tools
often suffer from missing advice to causes and back-in-time capabilities. Thus, devel-
opers have to rely primarily on their intuition as it is not clear how erroneous behavior
comes to be. On the other hand, testing often only verifies if a failure occurs or not.
There is no additional information about failure causes or at least similarities between
failing and passing tests.
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(a) Infection chain (b) Coverage-based anomalies

Figure 1: Developers follow the infection chain from failures back to defects or they
debug a list of suspicious methods one by one.

The differences between passing and failing test cases restrict the search space for
debugging. Analysis techniques that compare test cases are able to reveal anomalies
in the behavior and state of programs. Such anomalies differ from expectations and
they identify suspicious program entities that could be responsible for failure causes.
For instance, the numbers in Figure 1 (b) reflect the suspiciousness scores from
spectrum-based fault localization [6]. Based on the number of failing and passing tests
per covered method a percentage value determines the failure cause probability. Al-
though anomalies are excellent hints for starting debugging—they are neither failure
causes nor defects. Since existing techniques do not consider the infection chain at
all, developers have to debug a list of anomalies one by one. In our example, there are
four methods with the same high suspiciousness value and it is not clear how they are
related to failure causes, to each other, and the still unknown defect.

To further reduce debugging costs, we argue that it is important to integrate anoma-
lies and failure causes. Linked views between suspicious source code entities and
erroneous behavior help to localize causes more efficiently. An integration supports
developers not only in answering more difficult questions but also allows other debug-
ging activities such as the identification of experts to benefit even from anomalies.
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3 Test-driven Perspectives: Integration of Anomalies
and Failure Causes for Debugging Unit Tests

Test-driven perspectives integrate anomalies and failure causes and provide a com-
prehensive tool suite for debugging reproducible failures. Based on unit tests as entry
points into failing behavior [13], developers are able to follow infection chains more
easily and to investigate failure causes from different point of views. Starting from a
breadth first search, they refine their understanding of corrupted program entities until
they are able to fix the defect. In doing so, anomalies help to focus on failure causes
and to navigate developers through the large search space of programs.

3.1 Localizing Suspicious System Parts

Having at least one failing unit test, developers can compare its execution with other
test cases and identify starting points for debugging. For supporting such a breadth-
first search, we provide a complete system overview that highlights relationships be-
tween anomalies and problematic areas for potential failure causes [10]. By applying
and improving spectrum-based fault localization [6], which predicts anomalies by the
ratio of failed and passed tests at covered methods, we automatically localize pos-
sible failure causes within a few suspicious methods and so significantly reduce the
necessary search space.

Figure 2: PathMap is our extended test runner that analyzes test case behavior and
visualizes suspicious methods of the system under observation.
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Our PathMap tool [8] implements this approach as an extended test runner for the
Squeak/Smalltalk development environment (Figure 2). Its integral components are a
scalable visualization in form of an interactive tree map and a low overhead dynamic
analysis framework for computing anomalies at methods and refining results at state-
ments on-demand.

3.2 Identification of Experienced Developers

As understanding failure causes still requires thorough familiarity with suspicious sys-
tem parts, we propose a new metric for identifying expert knowledge [10]. Especially in
large projects where not everyone knows everything, an important task is to find con-
tact persons that are able to explain erroneous behavior or even fix the bug itself [1].
Assuming that the author of the failure-inducing method is the most qualified contact
person, we approximate developers that have recently worked on suspicious system
parts. Our metric restricts the set of possible experts to suspicious methods only and
so improves the accuracy of recommended contact persons. Based on PathMap’s
data, we sum up suspicious and confident methods for each developer, compute the
harmonic mean for preventing outliers, and constitute the proportion to all suspicious
system parts. With our ranking metric, we do not want to blame developers but rather
we expect that the individual skills of experts help in comprehending and fixing failure
causes more easily.
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Figure 3: Ranking of the most qualified developers for 1,000 failures in Seaside.

We evaluate our developer ranking metric by introducing a considerable number
of defects into the Seaside Web framework [12]. We randomly chose 1,000 covered
methods and for each of them insert a defect, compute a sorted list of recommended
developers, and compare it with the author of the faulty method. Seaside is an open
source Web framework written by 24 developers and consists of about 400 classes,
3,700 methods and a large unit test suite with more than 650 test cases. Figure 3
illustrates the distribution of the most qualified developers and their positions in the



Test-driven Perspectives for Debugging Reproducible Failures

recommendations. For almost half of all defects, the responsible developer of the faulty
method is ranked in the first place and for more than 90 % of all cases within the first
three ranks. Even if developers being responsible for the fault are not listed at the top,
we expect that their higher ranked colleagues are also familiar with suspiciously related
system parts. Considering that failure causes are still unknown, our developer ranking
metric achieves very satisfactory results with respect to the accuracy of recommended
contact persons.

3.3 Generalized Contracts for Cutting the Infection Chain

To shorten entire infection chains with their numerous method calls, we introduce au-
tomatically generated contracts that identify anomalies in run-time data of failing tests.
We reduce the search space of infection chains by revealing violated expectations from
sane test behavior that are closer to defects. Based on dynamic contract layers [5] and
context-oriented programming [2], we have a flexible extension of design by contract
that allows developers to manually define valid pre-/postconditions and invariants per
method. As soon as a condition is violated, an exception is thrown, another failure is
visible, and the infection chain is shortened because the new failure occurs before fail-
ing test assertions. However, the manual description of expected state and behavior is
not trivial, requires much time, and includes a high maintenance effort. For this reason,
we automatically derive contracts from the extensive and hidden source of information
of passing test cases. With the help of inductive dynamic analysis, we generalize spe-
cific run-time data and create contracts that define the proper usage of methods. For
instance, TypeHarvester [3] collects type information from unit tests and all of their exe-
cuted methods. Thus, wrong applied types or in other words anomalies of a failing test
can be recognized as soon as possible and the gap between defects and observable
failures is narrowed down.

Figure 4: PathBrowser extends the source code editor with test data and automatically
generated contracts from sane test behavior.
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Figure 4 illustrates our extended source code editor called PathBrowser. Besides
the presentation of covered unit tests per method, it allows developers to add and see
contract information per method. For instance, the shown method requires a valid call
graph model that was included in all passing tests. If a failing test do not have such a
model, the contract is violated and an exception reveals a new observable failure. We
argue that such anomalies are closer to defects because they are part of the infection
chain and occur before original failures such as a failing unit test assertions.

3.4 Lightweight Back in Time Debugging of Failing Behavior

Figure 5: PathFinder is our lightweight back in time debugger that classifies failing test
behavior for supporting developers in navigating to failure causes.

For understanding the relationship between anomalies and causes and to follow
corrupted state and behavior back to failure-inducing origins, we offer fast access to
the complete behavior of tests and their erroneous run-time data. PathFinder is our
back in time debugger for introspecting specific test executions with a special focus
on fault localization. It does not only provide immediate access to run-time informa-
tion, but also classifies traces with suspicious methods. For localizing faults in test
case behavior, developers start exploration either directly or out of covered suspicious
methods as provided by PathMap. Subsequently, PathFinder opens at the chosen
method as shown in Figure 5 and allows for following the infection chain back to the
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failure cause. We provide arbitrary navigation through method call trees and their state
spaces. Besides common back in time features such as a query engine for getting a
deeper understanding of what happened, our PathFinder possesses three distinguish-
ing characteristics. First, step-wise run-time analysis [11] allows for immediate access
to run-time information of test cases. Second, the classification of suspicious trace
data facilitates navigation in large traces [10]. Third, refining fault localization at the
statement level reveals further details for identifying failure causes.

3.5 Anomalous Code Views for Fixing Defects

To fix defects, we provide an interactive source code view that highlights the impact
of failures. Developers are able to focus on involved program entities and their rela-
tionships so that they understand how defects propagate and how to prevent similar
problems. Our anomalous code views reflect classes, methods, and anomalies being
involved in execution traces of failing tests. In an interactive and UML-like perspective,
developers fix defects and check their influence on other application parts.

Figure 6: PathView focuses on source code entities that are influenced by failures.

Figure 6 presents our PathView tool that combines the results of spectrum-based
fault localization, harvested type information [3], and a number of other reverse engi-
neering techniques. The view is based on the most suspicious classes and methods
of a failing test. The relationships between classes such as associations are automati-
cally created with collected types. All other information is created by following a bottom
up reverse engineering approach meaning that each element has a counterpart in the
code base. Thus, developers can modify and extend the view and all changes are also
done in corresponding source code entities. After fixing the defect, they can run the
tests again and see how anomalies with their representing colors are gone.
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3.6 Improved Failure Detection with Test Quality Feedback

Developers require feedback about the quality of their test base to ensure good cov-
erage of a software system, to prioritize testing effort, and to recognize new failures
as soon as possible. Test quality feedback [9] supports developers in the identification
and correction of inadequately tested system parts with respect to their effectivity and
efficiency. Our approach combines multiple high-level views of system, coverage, and
profiling information. Effectivity feedback reveals where to increase the testing effort
and who is best able to write new tests. For instance, we identify complex code with too
less tests and methods that are used in reality but not covered by unit tests [4,7]. Effi-
ciency feedback reports on run-time performance and memory consumption to speed
up the execution of entire test suites with limited effort. To ensure automated, scal-
able, and fast responses to developers we base our approach on our PathMap and its
coverage framework that provides immediate feedback at the method level and more
detailed on-demand feedback at the statement level.

Figure 7: 4Conferences before and after the second phase of the implementation which
used our test quality feedback.

We evaluate the practicality of our approach through the study of a conference
management web application. The project was developed in two phases by two distinct
groups of students in the context of a software engineering course. The first phase
resulted in a working system with basic features only and consisted of 5 packages, 77
classes, 1126 methods, and 21.58 % coverage by unit tests. For the second phase, we
asked a group of 16 bachelor students to add a specified set of features to the system.
After 3 months the system resulted in 7 packages, 131 classes, and 1813 methods. As
a result of their work the method coverage increased from 21.58 % in the first phase to
69.33 % at the end of the second. Figure 7 shows two tree maps of our PathMap tool.
On the left-hand side the visualization shows the system after the first phase: students
have only tested the model package. On the right-hand side the tree map shows the
system after the second phase. The students told us they made extensive use of the
test runner and especially the effectivity feedback. They told us the test runner helped
them to find gaps in the coverage and made it clear which new tests they had to write.
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4 Summary and Next Steps

We propose test-driven perspectives and its accompanying tool suite for simplifying
debugging of failures that are reproducible via unit tests. With the help of the Path
tool suite, developers can localize suspicious system parts, learn about other devel-
opers who are likely able to help, automatically shorten the infection chain by violated
contracts, debug erroneous behavior back to failure-inducing origins, and fix the failure
with a focused code view. Furthermore, we provide test quality feedback to strengthen
the test base so that new failures can be recognized as soon as possible.

Future work is two-fold. First, dynamic contract layers for Smalltalk and our anoma-
lous code views are still under development and need to be completed. Second, we
are planning a larger user study to assess how all test-driven perspectives help and
improve debugging in general.
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