
Follow the Path: Debugging Tools
for Test-Driven Fault Navigation

Michael Perscheid and Robert Hirschfeld
Software Architecture Group

Hasso-Plattner-Institute
University of Potsdam, Germany

firstname.lastname@hpi.uni-potsdam.de

Abstract—Debugging failing test cases, particularly the search
for failure causes, is often a laborious and time-consuming
activity. Standard debugging tools such as symbolic debuggers
and test runners hardly facilitate developers during this task
because they neither provide advice to failure causes nor back-
in-time capabilities.

In this paper, we present test-driven fault navigation as
a debugging guide that integrates spectrum-based and state
anomalies into execution histories in order to systematically trace
failure causes back to defects. We describe and demonstrate
our Path tools that implement our debugging method for the
Squeak/Smalltalk development environment.

Index Terms—Debugging, Testing, Back-in-time, Spectrum-
based Anomalies, Likely Invariants, Squeak, Smalltalk

I. INTRODUCTION

The correction of software failures tends to be very cost-
intensive because their debugging is an often time-consuming
development activity. During this activity, developers largely
attempt to understand what causes failures: Starting with a test
case that reproduces the observable failure, they have to follow
failure causes along the infection chain back to the root cause
(defect). This idealized procedure requires deep knowledge
of the system because failures and defects can be far apart.
Unfortunately, common debugging tools are inadequate for
systematically investigating such infection chains in detail [1].

Our test-driven fault navigation [2] is a debugging guide
that integrates spectrum- [3] and state-based [4] anomaly
detection into a systematic breadth-first search for tracing
failure causes back to defects. Starting with at least one test
case that can reproduce the observable failure, we localize
anomalies by comparing the method coverage and occurred
state properties of all failed and passed test cases. For example,
methods that are being executed by a large number of failing
but only a few passing tests have a higher failure cause
probability (anomaly) than methods that are being executed
by less failing but many passing test cases. By integrating
such anomalies into a back-in-time debugger [5], we highlight
suspicious method calls, reveal corrupted state properties, and
allow developers to distinguish between suspicious and ex-
pected run-time behavior. Thus, our execution histories include
additional information about failure cause probabilities that
gives developers helpful advice on how to follow infection
chains back to their root causes.

Our systematic search consists of four specific navigation
techniques that together support the creation, evaluation, and
refinement of failure cause hypotheses. First, structure nav-
igation localizes suspicious system parts and restricts the
initial search space. Second, team navigation recommends
experienced developers for helping with failure causes by
focusing on authors of anomalies. Third, behavior navigation
allows developers to follow emphasized infection chains back
to root causes. Fourth, state navigation identifies corrupted
state and reveals parts of the infection chain automatically.

In this paper, we present our Path tools that implement
test-driven fault navigation for the Squeak/Smalltalk [6]. We
demonstrate their application by debugging one example fail-
ure step by step until the root cause has been found.

The remainder of this paper is structured as follows: Sec-
tion II introduces our Path tools that implement our debugging
approach. Section III demonstrates a debugging session. Sec-
tion IV presents related work. Section V concludes.

II. THE PATH TOOLS

Our Path tools as presented in Fig. 1 primarily consist of
two debugging tools that realize test-driven fault navigation.

A. PathMap: Extended Test Runner Feedback

PathMap [7] is an extended unit test runner for implement-
ing our structure, team, and state navigation. It does not only
verify test cases but also localizes failure causes. Its integral
components are from left to right a testing control panel (A),
a compact tree map visualization of the software system (B),
and several flaps for accessing various analysis techniques (C).

The testing control panel (A) provides nearly the same
functionality as a standard test runner. Developers can choose
from different test suites of the selected project and run them.

The tree map (B) in the middle presents the structure of
the system under observation with its packages, classes, and
methods. Each small method box can be colored to represent
test case and analysis results. It is possible for developers to
interact with the tree map: receive the name of a source code
entity by hovering over a box; request additional information
about colored metric values (as shown in the message box); or
debug into a suspicious method execution with our lightweight
back-in-time debugger called PathFinder. Furthermore, the test
runner also presents a status bar on the top displaying a

978-1-4799-3752-3/14 c© 2014 IEEE CSMR-WCRE 2014, Antwerp, Belgium
Tool Demonstration

Accepted for publication by IEEE. c© 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

446



Fig. 1. PathMap as an extended test runner and PathFinder as a lightweight back-in-time debugger implement our test-driven fault navigation.

summary of the test suites execution and a status bar on the
bottom displaying a summary of project metrics.

Flaps on the right (C) set PathMap into specific analysis
modes for collecting valuable feedback during the execution
of test cases. Without an opened flap, PathMap acts like a
standard test runner and only colors test case results in the
tree map. In Fig. 1 (left), the fault localization flap is open
and allows developers to start the structure navigation [8]. If
developers run selected tests, we automatically record their
coverage, compute spectrum-based anomalies [3], and color
the map with suspiciousness and confidence scores. Within the
flap, developers can choose a proper spectrum-based metric,
see a color legend, and enable filtering of partially covered
methods. For our team navigation [8], pushing the “Developer
Ranking” button presents a ranked list of expert developers
by relating suspicious methods with their authors. Moreover,
we offer other flaps to further reveal hidden test knowledge.
For example, the inductive analysis flap allows developers to
derive likely invariants [4] for our state navigation [9].

B. PathFinder: Lightweight Back-in-Time Debugger for Tests

PathFinder [10] is our lightweight back-in-time debugger [5]
for exploring specific test case executions with a special focus
on fault localization. Not only does it provide immediate ac-
cess to run-time information [10], but also classifies traces with
suspicious behavior [8] and anomalous state [9]. Developers
start PathFinder at a chosen method in PathMap and follow the
infection chain back to its root cause. Its main components are
a control panel on the top and the test case execution history.

In Fig. 1 (right), PathFinder provides a control panel (1)
to set up the dynamic analysis of test cases and to support
the navigation through the large amount of run-time data. The
yellow box presents the final test result and allows developers
to rerun test cases. Views and profiling information enhance
the results of initial call trees. While views record more details
about called receiver objects such as names and identities,
profiling precisely measures the required time for executing a
test case. Finally, the subsequent buttons and a query engine

provide functionality for arbitrarily navigating through an
execution history.

At the bottom of Fig. 1 (right), the visualized information
primarily consists of a call tree that reflects a particular test
case run. A call tree provides comprehensive information of
the entire program execution and shows how methods call
each other. From top to bottom, each node represents one
method call and their subtrees describe its called methods.
Each method call node consists of a colored box with a
percentage value for its suspiciousness score and a name rep-
resenting receiver class, implementation class in parentheses,
and method name. We provide arbitrary navigation through
method call trees and their state spaces (i. e. object properties).
Developers can follow traces in both directions and expand and
collapse subtrees interactively.

Some of the tree nodes have been expanded in Fig. 1 (right)
to reveal details about the method implementation and the
applied state. For example, an expanded method call node (2)
shows its source code, a control panel for requesting details
and refining run-time data, and the return value. Most notably,
the control panel allows developers to start a source code editor
and a symbolic debugger, obtain additional information about
anomalies, refine coverage and spectrum-based fault naviga-
tion at statements, and explore object states. After indicating
interest in a specific argument, receiver, or return object, we
reexecute the test case, make a deep copy of the requested
object, and present it in an object explorer on the right.
Developers can explore all object properties and compare them
to other method nodes in the execution history. Furthermore,
our state navigation [9] maps violated contracts to traces by
adding small exclamation marks (3) to methods. Developers
can further inspect such state anomalies and receive detailed
information about the exact violation.

III. DEBUGGING DEMONSTRATION

To demonstrate our test-driven fault navigation and its
corresponding Path tools, we debug failure 4 of our previous

447



user study [8] step-by-step1. As the underlying system, we
choose Squeak’s iCalendar library2 which implements the
identically named file format for sharing meeting requests
and tasks independent of specific calendar applications. Un-
fortunately, iCalendar’s synchronization mechanism does not
work as expected and obsolete calendar events remain active
even if users deleted them. We have already reproduced this
observable failure with one failing test case.

A. Step 1: Structure Navigation

Before we can start with our test-driven fault navigation, we
have to declare the system under observation. For that reason,
we create a new Path project for the iCalendar library and
choose its corresponding source code packages. After that,
our corresponding analyses are limited to this specific project
and we are ready for debugging with our approach.

Fig. 2. Step 1: Where to start debugging? Our structure navigation localizes
two very suspicious classes (red colored areas in ICCalendar and
ICImporter) for creating initial failure cause hypotheses.

In the first step, our structure navigation helps us to empha-
size suspicious system parts and to create a first failure cause
hypothesis. We start our extended test runner PathMap, open
the “fault localization” flap, and run all test cases of iCalendar.
In doing so, our tool compares the coverage between all pass-
ing and failing test cases and so reveals suspicious methods
or in other words anomalies. Fig. 2 presents the results within
our compact tree map. The more red a method is, the higher
is the failure cause probability (more failing than passing tests
are involved during the execution of this method). This heat
map allows us to get a first advice about what is going wrong
within the iCalendar system. In this example, we see two hot
spots at the class ICImporter and ICCalendar. However,

1More information on our test-driven fault navigation can be found at:
http://www.michaelperscheid.de/projects/

2http://www.squeaksource.com/ical/

it is still unclear, which of these methods includes the defect,
how these anomalies are related to each other, and how the
failure comes into being.

B. Step 2: Team Navigation

Fig. 3. Step 2: Who understands failure causes best? Based on suspicious
methods, our team navigation identifies several developers and a very expe-
rienced one for debugging the failure.

As we are not completely familiar with the iCalendar
project, it can be very valuable to ask a more experienced
developer for help. Our optional team navigation proposes a
novel metric that computes expert knowledge by combining
anomalies with their corresponding authors. As these sus-
picious methods have a high probability to include failure
causes, their authors are more likely to understand and debug
the failure. Compared to expertise metrics that consider the
entire system, we restrict the search space on system parts that
are related to failure causes only. After clicking the button
“Developer Ranking” in PathMap’s “fault localization” flap
and choosing a proper author metric, we get a prioritized list of
author initials. Fig. 3 proposes “pmm” as a developer with the
best knowledge about the two suspicious classes. Please note:
This metric does not blame developers, it rather recommends
experts for helping with failures.

C. Step 3: Behavior Navigation

Fig. 4. Step 3: What happened before failures? Our behavior navigation
classifies the complete execution history of a failing test case with suspicious
methods (colored method calls) and so guides developers back to root causes.

Based on the results of our structure navigation, we would
like to understand how the failure comes into being—we
need access to the entire execution history of the failing

448



test case. For that reason, we start our lightweight back-
in-time debugger PathFinder by clicking on the failing test
case in our PathMap visualization. After that, a new debugger
window immediately opens and presents the method call tree
of the failing testSynchronize as shown in Fig. 4. The
colors represent suspicious method calls (reused anomalies
from our structure navigation) that help us to navigate through
the large amount of run-time information. The more red a
method call is, the more likely it includes a failure cause.
Hence, we can follow all red methods and understand how
these anomalies are related to each other. Starting with our
failing test case at the top, the next suspicious method seems
to be ICImporter>>synchronize, looking at its sub-calls
synchronizeComponents: is also very suspicious and so
on. Following these anomalies allows us to abbreviate a lot of
methods that are not related to our failure and so allows us to
reduce the required debugging effort. Unfortunately, we still
have to understand potential failure causes and corrupted state
properties by ourselves.

D. Step 4: State Navigation

Fig. 5. Step 4: Which state properties are infected? Our state navigation
automatically identifies unexpected objects and so reveals parts of the infection
chain. Here, we identify a wrong (ICEvent) type instead of a String.

In the last step of our test-driven fault navigation, we
automatically identify unexpected state properties, map them
to the execution history of our failing test, and find out what is
going wrong. First, we have to learn expected state properties
from the remaining passing test cases. We start PathMap again,
open the “induction” flap, choose a harvester mode, and run
all tests. In doing so, PathMap runs all passing test cases,
observes their applied objects, and derives generalized object
properties. Based on these results, we add dynamic contracts
that trigger violations if one of the identified invariants does
not hold. Now, PathFinder is able to compare the expected
state properties of passing test cases with our failing one. Fig. 5
presents the enhanced method call tree that shows small excla-
mation marks to highlight such state violations. By hovering
over these icons, we get closer information about unexpected
state properties. For example, the specific type violation in
ICCalendar>>includesEventWithUid signalizes a wrong
ICEvent instead of a String object. With that in mind, we
can further inspect calling methods (with a focus on suspicious
colors and further state anomalies) until we end in the method
deleteComponentsNotInFile. Here, we find the root cause

of our demonstrating failure. This method fails to convert
ICEvent objects into their proper uid String representations.
For that reason, the subsequent synchronization mechanism
does not find existing objects that should be deleted later on.

IV. RELATED WORK

Test-driven fault navigation and our Path tools are based
on the combination and improvement of several debugging
techniques. Spectrum-based fault localization [3] provides the
basis for our structure navigation. We enhance this idea by
reusing anomalies in different perspectives and so give helpful
advice on how to follow infection chains back to their root
causes. One other perspective is our team navigation that
applies such anomalies in order to restrict the search space
for suitable experts. A similar idea has been developed in
parallel [11]. Our behavior navigation combines such suspi-
cious methods with back-in-time debuggers [5] and, finally,
likely invariants [4] emphasize state violations along infection
chains. Moreover, to ensure an experience of immediacy when
debugging with our tools, we have also developed the so called
incremental dynamic analysis [10]. A full discussion of related
work can be found in [2].

V. CONCLUSION

In this tool demonstration, we presented our Path tools
that implement our test-driven fault navigation debugging
approach. With the help of both PathMap as an extended
test runner as well as PathFinder as a lightweight back-
in-time debugger, developers are able to answer important
questions about failure causes: where to start debugging, who
understands failure causes best, what happened before failures,
and which state properties are infected?

REFERENCES

[1] A. Zeller, Why Programs Fail: A Guide to Systematic Debugging.
Morgan Kaufmann, 2009.

[2] M. Perscheid, “Test-driven Fault Navigation for Debugging Repro-
ducible Failures,” Ph.D. dissertation, Hasso-Plattner-Institute, University
of Potsdam, 2013.

[3] J. Jones, M. Harrold, and J. Stasko, “Visualization of Test Information
to Assist Fault Localization,” in ICSE, 2002, pp. 467–477.

[4] M. Ernst, J. Perkins, P. Guo, S. McCamant, C. Pacheco, M. Tschantz,
and C. Xiao, “The Daikon System for Dynamic Detection of Likely
Invariants,” Sci. Comput. Program., vol. 69, no. 1-3, pp. 35–45, 2007.

[5] B. Lewis, “Debugging Backwards in Time,” in AADEBUG, 2003, pp.
225–235.

[6] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, and A. Kay, “Back to the
Future: The Story of Squeak, a Practical Smalltalk Written in Itself,” in
OOPSLA, 1997, pp. 318–326.

[7] M. Perscheid, D. Cassou, and R. Hirschfeld, “Test Quality Feedback -
Improving Effectivity and Efficiency of Unit Testing,” in C5, 2012, pp.
60–67.

[8] M. Perscheid, M. Haupt, R. Hirschfeld, and H. Masuhara, “Test-driven
Fault Navigation for Debugging Reproducible Failures,” Journal of the
JSSST on Computer Software, vol. 29, no. 3, pp. 188–211, 2012.

[9] M. Perscheid, T. Felgentreff, and R. Hirschfeld, “Follow the Path:
Debugging State Anomalies along Execution Histories,” in CSMR-
WCRE, 2014.

[10] M. Perscheid, B. Steinert, R. Hirschfeld, F. Geller, and M. Haupt, “Im-
mediacy through Interactivity: Online Analysis of Run-time Behavior,”
in WCRE, 2010, pp. 77–86.

[11] F. Servant and J. Jones, “WhoseFault: Automatic Developer-to-Fault
Assignment through Fault Localization,” in ICSE, 2012, pp. 36–46.

449


